
Introduction to
algorithms 1

In this chapter

• You get a foundation for the rest of the book

• You write your first search algorithm (binary search)

• You learn how to talk about the running time of an algorithm (Big O
notation)

Introduction
An algorithm is a set of instructions for accomplishing a
task. Every piece of code could be called an algorithm, but
this book covers the more interesting bits. I chose the
algorithms in this book for inclusion because they’re fast, or
they solve interesting problems, or both. Here are some
highlights:

• Chapter 1 talks about binary search and shows how an
algorithm can speed up your code. In one example, the
number of steps needed goes from 4 billion down to
32!

• A GPS device uses graph algorithms (as you’ll learn in
chapters 6, 7, and 8) to calculate the shortest route to
your destination.

• You can use dynamic programming (discussed in
chapter 9) to write an AI algorithm that plays checkers.

In each case, I’ll describe the algorithm and give you an
example. Then I’ll talk about the running time of the
algorithm in Big O notation. Finally, I’ll explore what other
types of problems could be solved by the same algorithm.

What you’ll learn about performance
The good news is, an implementation of every algorithm in
this book is probably available in your favorite language, so
you don’t have to write each algorithm yourself! But those
implementations are useless if you don’t understand the
trade-offs. In this book, you’ll learn to compare trade-offs
between different algorithms: Should you use merge sort or
quicksort? Should you use an array or a list? Just using a
different data structure can make a big difference.

What you’ll learn about solving problems
You’ll learn techniques for solving problems that might
have been out of your grasp until now. For example:

• If you like making video games, you can write an AI
system that follows the user around using graph
algorithms.

• You’ll learn to make a recommendations system using
k-nearest neighbors.

• Some problems aren’t solvable in a timely manner! The
part of this book that talks about NP-complete
problems shows you how to identify those problems
and come up with an algorithm that gives you an
approximate answer.

More generally, by the end of this book, you’ll know some
of the most widely applicable algorithms. You can then use
your new knowledge to learn about more specific
algorithms for AI, databases, and so on. Or you can take on
bigger challenges at work.

What you need to know

You’ll need to know basic algebra before starting this book. In
parti-cular, take this function: f(x) = x × 2. What is f(5)? If you
answered 10, you’re set.

Additionally, this chapter (and this book) will be easier to follow if
you’re familiar with one programming language. All the examples
in this book are in Python. If you don’t know any programming
languages and want to learn one, choose Python—it’s great for
beginners. If you know another language, like Ruby, you’ll be
fine.

Binary search
Suppose you’re searching for a person in the phone book
(what an old-fashioned sentence!). Their name starts with K.
You could start at the beginning and keep flipping pages
until you get to the Ks. But you’re more likely to start at a
page in the middle, because you know the Ks are going to
be near the middle of the phone book.

Or suppose you’re searching for a word in a dictionary, and
it starts with O. Again, you’ll start near the middle.

Now suppose you log on to Facebook. When you do,
Facebook has to verify that you have an account on the
site. So, it needs to search for your username in its
database. Suppose your username is karlmageddon.
Facebook could start from the As and search for your
name—but it makes more sense for it to begin somewhere
in the middle.

This is a search problem. And all these cases use the same
algorithm to solve the problem: binary search.

Binary search is an algorithm; its input is a sorted list of
elements (I’ll explain later why it needs to be sorted). If an
element you’re looking for is in that list, binary search
returns the position where it’s located. Otherwise, binary
search returns null.

For example:

Looking for companies in a phone book with binary search

Here’s an example of how binary search works. I’m thinking
of a number between 1 and 100.

You have to try to guess my number in the fewest tries
possible. With every guess, I’ll tell you if your guess is too
low, too high, or correct.

Suppose you start guessing like this: 1, 2, 3, 4 …. Here’s how
it would go.

A bad approach to number guessing

This is simple search (maybe stupid search would be a
better term). With each guess, you’re eliminating only one
number. If my number was 99, it could take you 99 guesses
to get there!

A better way to search

Here’s a better technique. Start with 50.

Too low, but you just eliminated half the numbers! Now
you know that 1–50 are all too low. Next guess: 75.

Too high, but again you cut down half the remaining
numbers! With binary search, you guess the middle number
and eliminate half the remaining numbers every time. Next
is 63 (halfway between 50 and 75).

This is binary search. You just learned your first algorithm!
Here’s how many numbers you can eliminate every time.

Eliminate half the numbers every time with binary search.

Whatever number I’m thinking of, you can guess in a
maximum of seven guesses—because you eliminate so
many numbers with every guess!

Suppose you’re looking for a word in the dictionary. The
dictionary has 240,000 words. In the worst case, how many

steps do you think each search will take?

Simple search could take 240,000 steps if the word you’re
looking for is the very last one in the book. With each step
of binary search, you cut the number of words in half until
you’re left with only one word.

So binary search will take 18 steps—a big difference! In
general, for any list of n, binary search will take log2 n steps
to run in the worst case, whereas simple search will take n
steps.

Logarithms

You may not remember what logarithms are, but you probably
know what exponentials are. log10 100 is like asking, “How many
10s do we multiply together to get 100?” The answer is 2: 10 ×
10. So log10 100 = 2. Logs are the inverse of exponentials.

Logs are the inverse of exponentials.

In this book, when I talk about running time in Big O notation
(explained a little later), log always means log2. When you search
for an element using simple search, in the worst case you might
have to look at every single element. So for a list of 8 numbers,
you’d have to check 8 numbers at most. For binary search, you
have to check log n elements in the worst case. For a list of 8
elements, log 8 == 3, because 23 == 8. So for a list of 8 numbers,
you would have to check 4 numbers at most. For a list of 1,024
elements, log 1,024 = 10, because 210 == 1,024. So for a list of
1,024 numbers, you’d have to check 10 numbers at most.

NOTE I’ll talk about log time a lot in this book, so
you should understand the concept of
logarithms. If you don’t, Khan Academy
(khanacademy.org) has a nice video that makes
it clear.

NOTE Binary search only works when your list is
in sorted order. For example, the names in a
phone book are sorted in alphabetical order, so
you can use binary search to look for a name.
What would happen if the names weren’t sorted?

Let’s see how to write binary search in Python. The code

sample here uses arrays. If you don’t know how arrays
work, don’t worry; they’re covered in the next chapter. You
just need to know that you can store a sequence of
elements in a row of consecutive buckets called an array.
The buckets are numbered starting with 0: the first bucket
is at position #0, the second is #1, the third is #2, and so
on.

NOTE You will see me use the terms list and array
interchangeably in the code. This is because in
Python, arrays are called lists.

The binary_search function takes a sorted array and an
item. If the item is in the array, the function returns its
position. You’ll keep track of what part of the array you
have to search through. At the beginning, this is the entire
array:

low = 0
high = len(arr) - 1

Each time, you check the middle element:

mid = (low + high) // 2 #A
guess = arr[mid]

#A mid is rounded down by Python automatically if (low + high) isn’t an even

number.

If the guess is too low, you update low accordingly:

if guess < item:
 low = mid + 1

And if the guess is too high, you update high. Here’s the
full code:

def binary_search(arr, item):
 low = 0 #A
 high = len(arr)—1 #A

 while low <= high: #B
 mid = (low + high) // 2 #C
 guess = arr[mid]
 if guess == item: #D
 return mid
 elif guess > item: #E
 high = mid - 1
 else: #F
 low = mid + 1
 return None #G

my_list = [1, 3, 5, 7, 9] #H

print(binary_search(my_list, 3)) # => 1 #I
print(binary_search(my_list, -1)) # => None #J

#A low and high keep track of which part of the list you’ll search in.

#B While you haven’t narrowed it down to one element …

#C … check the middle element.

#D Found the item.

#E The guess was too high.

#F The guess was too low.

#G The item doesn’t exist.

#H Let’s test it!

#I Remember, lists start at 0. The second slot has index 1.

#J “None” means nil in Python. It indicates that the item wasn’t found.

Exercises
1. 1.1 Suppose you have a sorted list of 128 names, and

you’re searching through it using binary search. What’s
the maximum number of steps it would take?

2. 1.2 Suppose you double the size of the list. What’s the
maximum number of steps now?

Running time
Any time I talk about an algorithm, I’ll discuss its running
time. Generally you want to choose the most efficient
algorithm—whether you’re trying to optimize for time or
space.

Back to binary search. How much time do you save by
using it? Well, the first approach was to check each
number, one by one. If this is a list of 100 numbers, it takes
up to 100 guesses. If it’s a list of 4 billion numbers, it takes
up to 4 billion guesses. So the maximum number of
guesses is the same as the size of the list. This is called
linear time.

Binary search is different. If the list is 100 items long, it
takes at most 7 guesses. If the list is 4 billion items, it takes
at most 32 guesses. Powerful, eh? Binary search runs in

logarithmic time (or log time, as most people call it). Here’s
a table summarizing our findings today.

Run times for search algorithms

Big O notation
Big O notation is special notation that tells you how fast an
algorithm is. Who cares? Well, it turns out that you’ll use
other people’s algorithms often—and when you do, it’s
nice to understand how fast or slow they are. In this
section, I’ll explain what Big O notation is and give you a
list of the most common running times for algorithms using
it.

Algorithm running times grow at different rates
Bob is writing a search algorithm for NASA. His algorithm
will kick in when a rocket is about to land on the Moon, and
it will help calculate where to land.

This is an example of how the run time of two algorithms
can grow at different rates. Bob is trying to decide between
simple search and binary search. The algorithm needs to be
both fast and correct. On one hand, binary search is faster.
And Bob has only 10 seconds to figure out where to land—
otherwise, the rocket will be off course. On the other hand,
simple search is easier to write, and there is less chance of
bugs being introduced. And Bob really doesn’t want bugs
in the code to land a rocket! To be extra careful, Bob
decides to time both algorithms with a list of 100 elements.

Let’s assume it takes 1 millisecond to check one element.
With simple search, Bob has to check 100 elements, so the
search takes 100 ms to run. On the other hand, he only has
to check 7 elements with binary search (log2 100 is roughly
7), so that search takes 7 ms to run. But realistically, the list
will have more like a billion elements. If it does, how long
will simple search take? How long will binary search take?
Make sure you have an answer for each question before
reading on.

Running time for simple search vs. binary search, with a list of 100 elements

Bob runs binary search with 1 billion elements, and it takes
30 ms (log2 1,000,000,000 is roughly 30). “30 ms!” he thinks.
“Binary search is about 15 times faster than simple search,
because simple search took 100 ms with 100 elements, and
binary search took 7 ms. So simple search will take 30 × 15
= 450 ms, right? Way under my threshold of 10 seconds.”
Bob decides to go with simple search. Is that the right
choice?

No. Turns out, Bob is wrong. Dead wrong. The run time for
simple search with 1 billion items will be 1 billion ms, which
is 11 days! The problem is, the run times for binary search
and simple search don’t grow at the same rate.

Run times grow at very different speeds!

That is, as the number of items increases, binary search

takes a little more time to run. But simple search takes a lot
more time to run. So as the list of numbers gets bigger,
binary search suddenly becomes a lot faster than simple
search. Bob thought binary search was 15 times faster than
simple search, but that’s not correct. If the list has 1 billion
items, it’s more like 33 million times faster. That’s why it’s
not enough to know how long an algorithm takes to run—
you need to know how the running time increases as the
list size increases. That’s where Big O notation comes in.

Big O notation tells you how fast an algorithm is. For
example, suppose you have a list of size n. Simple search
needs to check each element, so it will take n operations.
The run time in Big O notation is O(n). Where are the
seconds? There are none—Big O doesn’t tell you the speed
in seconds. Big O notation lets you compare the number of
operations. It tells you how fast the algorithm grows.

Here’s another example. Binary search needs log n
operations to check a list of size n. What’s the running time
in Big O notation? It’s O(log n). In general, Big O notation is
written as follows.

What Big O notation looks like

This tells you the number of operations an algorithm will
make. It’s called Big O notation because you put a “big O”
in front of the number of operations (it sounds like a joke,
but it’s true!).

Now let’s look at some examples. See if you can figure out
the run time for these algorithms.

Visualizing different Big O run times
Here’s a practical example you can follow at home with a
few pieces of paper and a pencil. Suppose you have to
draw a grid of 16 boxes.

What’s a good algorithm to draw this grid?

ALGORITHM 1

One way to do it is to draw 16 boxes, one at a time.
Remember, Big O notation counts the number of
operations. In this example, drawing one box is one
operation. You have to draw 16 boxes. How many
operations will it take, drawing one box at a time?

Drawing a grid one box at a time

It takes 16 steps to draw 16 boxes. What’s the running time
for this algorithm?

ALGORITHM 2

Try this algorithm instead. Fold the paper.

In this example, folding the paper once is an operation. You
just made two boxes with that operation!

Fold the paper again, and again, and again.

Unfold it after four folds, and you’ll have a beautiful grid!
Every fold doubles the number of boxes. You made 16
boxes with 4 operations!

Drawing a grid in four folds

You can “draw” twice as many boxes with every fold, so you
can draw 16 boxes in 4 steps. What’s the running time for
this algorithm? Come up with running times for both
algorithms before moving on.

Answers: Algorithm 1 takes O(n) time, and algorithm 2 takes
O(log n) time.

Big O establishes a worst-case run time
Suppose you’re using simple search to look for a person in
the phone book. You know that simple search takes O(n)
time to run, which means in the worst case, you’ll have to
look through every single entry in your phone book. In this
case, you’re looking for Adit. This guy is the first entry in

your phone book. So you didn’t have to look at every
entry—you found it on the first try. Did this algorithm take
O(n) time? Or did it take O(1) time because you found the
person on the first try?

Simple search still takes O(n) time. In this case, you found
what you were looking for instantly. That’s the best-case
scenario. But we are using Big O notation for worst-case
scenario analysis. So you can say that, in the worst case,
you’ll have to look at every entry in the phone book once.
That’s O(n) time. It’s a reassurance—you know that simple
search will never be slower than O(n) time.

NOTE Along with the worst-case run time, it’s
also important to look at the average-case run
time. Worst case versus average case is
discussed in chapter 4.

Some common Big O run times
Here are five Big O run times that you’ll encounter a lot,
sorted from fastest to slowest:

• O(log n), also known as log time. Example: Binary
search.

• O(n), also known as linear time. Example: Simple
search.

• O(n * log n). Example: A fast sorting algorithm, like
quicksort (coming up in chapter 4).

• O(n2). Example: A slow sorting algorithm, like selection
sort (coming up in chapter 2).

• O(n!). Example: A really slow algorithm, like the
traveling salesperson (coming up next!).

Suppose you’re drawing a grid of 16 boxes again, and you
can choose from 5 different algorithms to do so. If you use
the first algorithm, it will take you O(log n) time to draw the
grid. You can do 10 operations per second. With O(log n)
time, it will take you 4 operations to draw a grid of 16
boxes (log 16 is 4). So it will take you 0.4 seconds to draw

the grid. What if you have to draw 1,024 boxes? It will take
you log 1,024 = 10 operations, or 1 second to draw a grid
of 1,024 boxes. These numbers are using the first algorithm.

The second algorithm is slower: it takes O(n) time. It will
take 16 operations to draw 16 boxes, and it will take 1,024
operations to draw 1,024 boxes. How much time is that in
seconds?

Here’s how long it would take to draw a grid for the rest of
the algorithms, from fastest to slowest:

There are other run times, too, but these are the five most
common.

This is a simplification. In reality you can’t convert from a
Big O run time to a number of operations this neatly, but
this is good enough for now. We’ll come back to Big O
notation in chapter 4, after you’ve learned a few more
algorithms. For now, the main takeaways are as follows:

• Algorithm speed isn’t measured in seconds, but in
growth of the number of operations.

• Instead of seconds, we talk about how quickly the run
time of an algorithm increases as the size of the input
increases.

• Run time of algorithms is expressed in Big O notation.
• O(log n) is faster than O(n), but it gets a lot faster as

the list of items you’re searching grows.

Exercises
Give the run time for each of these scenarios in terms of

Big O.

1. 1.3 You have a name, and you want to find the
person’s phone number in the phone book.

2. 1.4 You have a phone number, and you want to find
the person’s name in the phone book. (Hint: You’ll
have to search through the whole book!)

3. 1.5 You want to read the numbers of every person in
the phone book.

4. 1.6 You want to read the numbers of just the As. (This
is a tricky one! It involves concepts that are covered
more in chapter 4. Read the answer—you may be
surprised!)

The traveling salesperson
You might have read that last section and thought, “There’s
no way I’ll ever run into an algorithm that takes O(n!) time.”
Well, let me try to prove you wrong! Here’s an example of
an algorithm with a really bad running time. This is a
famous problem in computer science, because its growth is
appalling and some very smart people think it can’t be
improved. It’s called the traveling salesperson problem.

You have a salesperson.

The salesperson has to go to five cities.

This salesperson, whom I’ll call Opus, wants to hit all five
cities while traveling the minimum distance. Here’s one way
to do that: look at every possible order in which he could
travel to the cities.

He adds up the total distance and then picks the path with
the lowest distance. There are 120 permutations with 5
cities, so it will take 120 operations to solve the problem for
5 cities. For 6 cities, it will take 720 operations (there are
720 permutations). For 7 cities, it will take 5,040 operations!

The number of operations increases drastically.

In general, for n items, it will take n! (n factorial) operations
to compute the result. So this is O(n!) time, or factorial time.
It takes a lot of operations for everything except the
smallest numbers. Once you’re dealing with 100+ cities, it’s
impossible to calculate the answer in time—the Sun will
collapse first.

This is a terrible algorithm! Opus should use a different
one, right? But he can’t. This is one of the unsolved
problems in computer science. There’s no fast known
algorithm for it, and some smart people think it’s
impossible to have a smart algorithm for this problem. The
best we can do is come up with an approximate solution;
see chapter 10 for more.

Recap
• Binary search is a lot faster than simple search as your

array gets bigger.
• O(log n) is faster than O(n), but it gets a lot faster once

the list of items you’re searching through grows.smat
• Algorithm speed isn’t measured in seconds.
• Algorithm times are measured in terms of growth of an

algorithm.
• Algorithm times are written in Big O notation.

