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In this chapter 

• You get a foundation for the rest of the book

• You write your first search algorithm (binary search)

• You learn how to talk about the running time of an algorithm (Big O
notation)



Introduction 
An algorithm is a set of instructions for accomplishing a 
task. Every piece of code could be called an algorithm, but 
this book covers the more interesting bits. I chose the 
algorithms in this book for inclusion because they’re fast, or 
they solve interesting problems, or both. Here are some 
highlights: 

• Chapter 1 talks about binary search and shows how an 
algorithm can speed up your code. In one example, the 
number of steps needed goes from 4 billion down to 
32! 

• A GPS device uses graph algorithms (as you’ll learn in 
chapters 6, 7, and 8) to calculate the shortest route to 
your destination. 

• You can use dynamic programming (discussed in 
chapter 9) to write an AI algorithm that plays checkers. 

In each case, I’ll describe the algorithm and give you an 
example. Then I’ll talk about the running time of the 
algorithm in Big O notation. Finally, I’ll explore what other 
types of problems could be solved by the same algorithm. 

What you’ll learn about performance 
The good news is, an implementation of every algorithm in 
this book is probably available in your favorite language, so 
you don’t have to write each algorithm yourself! But those 
implementations are useless if you don’t understand the 
trade-offs. In this book, you’ll learn to compare trade-offs 
between different algorithms: Should you use merge sort or 
quicksort? Should you use an array or a list? Just using a 
different data structure can make a big difference. 



What you’ll learn about solving problems 
You’ll learn techniques for solving problems that might 
have been out of your grasp until now. For example: 

• If you like making video games, you can write an AI 
system that follows the user around using graph 
algorithms. 

• You’ll learn to make a recommendations system using 
k-nearest neighbors. 

• Some problems aren’t solvable in a timely manner! The 
part of this book that talks about NP-complete 
problems shows you how to identify those problems 
and come up with an algorithm that gives you an 
approximate answer. 

More generally, by the end of this book, you’ll know some 
of the most widely applicable algorithms. You can then use 
your new knowledge to learn about more specific 
algorithms for AI, databases, and so on. Or you can take on 
bigger challenges at work. 

What you need to know 

You’ll need to know basic algebra before starting this book. In 
parti-cular, take this function: f(x) = x × 2. What is f(5)? If you 
answered 10, you’re set. 

Additionally, this chapter (and this book) will be easier to follow if 
you’re familiar with one programming language. All the examples 
in this book are in Python. If you don’t know any programming 
languages and want to learn one, choose Python—it’s great for 
beginners. If you know another language, like Ruby, you’ll be 
fine. 



Binary search 
Suppose you’re searching for a person in the phone book 
(what an old-fashioned sentence!). Their name starts with K. 
You could start at the beginning and keep flipping pages 
until you get to the Ks. But you’re more likely to start at a 
page in the middle, because you know the Ks are going to 
be near the middle of the phone book. 

 

Or suppose you’re searching for a word in a dictionary, and 
it starts with O. Again, you’ll start near the middle.  

Now suppose you log on to Facebook. When you do, 
Facebook has to verify that you have an account on the 
site. So, it needs to search for your username in its 
database. Suppose your username is karlmageddon. 
Facebook could start from the As and search for your 
name—but it makes more sense for it to begin somewhere 
in the middle. 



This is a search problem. And all these cases use the same 
algorithm to solve the problem: binary search. 

Binary search is an algorithm; its input is a sorted list of 
elements (I’ll explain later why it needs to be sorted). If an 
element you’re looking for is in that list, binary search 
returns the position where it’s located. Otherwise, binary 
search returns null. 

 

For example: 



 

Looking for companies in a phone book with binary search 

Here’s an example of how binary search works. I’m thinking 
of a number between 1 and 100.  

 

You have to try to guess my number in the fewest tries 
possible. With every guess, I’ll tell you if your guess is too 
low, too high, or correct. 

Suppose you start guessing like this: 1, 2, 3, 4 …. Here’s how 
it would go. 



 

A bad approach to number guessing 

This is simple search (maybe stupid search would be a 
better term). With each guess, you’re eliminating only one 
number. If my number was 99, it could take you 99 guesses 
to get there! 

A better way to search 

 

Here’s a better technique. Start with 50. 

Too low, but you just eliminated half the numbers! Now 
you know that 1–50 are all too low. Next guess: 75.  



 

Too high, but again you cut down half the remaining 
numbers! With binary search, you guess the middle number 
and eliminate half the remaining numbers every time. Next 
is 63 (halfway between 50 and 75). 

 

This is binary search. You just learned your first algorithm! 
Here’s how many numbers you can eliminate every time. 

 

Eliminate half the numbers every time with binary search. 

Whatever number I’m thinking of, you can guess in a 
maximum of seven guesses—because you eliminate so 
many numbers with every guess! 

Suppose you’re looking for a word in the dictionary. The 
dictionary has 240,000 words. In the worst case, how many 



steps do you think each search will take? 

 

Simple search could take 240,000 steps if the word you’re 
looking for is the very last one in the book. With each step 
of binary search, you cut the number of words in half until 
you’re left with only one word. 

 

So binary search will take 18 steps—a big difference! In 
general, for any list of n, binary search will take log2 n steps 
to run in the worst case, whereas simple search will take n 
steps. 



 

Logarithms 

You may not remember what logarithms are, but you probably 
know what exponentials are. log10 100 is like asking, “How many 
10s do we multiply together to get 100?” The answer is 2: 10 × 
10. So log10 100 = 2. Logs are the inverse of exponentials. 

 

Logs are the inverse of exponentials. 

In this book, when I talk about running time in Big O notation 
(explained a little later), log always means log2. When you search 
for an element using simple search, in the worst case you might 
have to look at every single element. So for a list of 8 numbers, 
you’d have to check 8 numbers at most. For binary search, you 
have to check log n elements in the worst case. For a list of 8 
elements, log 8 == 3, because 23 == 8. So for a list of 8 numbers, 
you would have to check 4 numbers at most. For a list of 1,024 
elements, log 1,024 = 10, because 210 == 1,024. So for a list of 
1,024 numbers, you’d have to check 10 numbers at most. 

NOTE I’ll talk about log time a lot in this book, so 
you should understand the concept of 
logarithms. If you don’t, Khan Academy 
(khanacademy.org) has a nice video that makes 
it clear. 

NOTE Binary search only works when your list is 
in sorted order. For example, the names in a 
phone book are sorted in alphabetical order, so 
you can use binary search to look for a name. 
What would happen if the names weren’t sorted? 

Let’s see how to write binary search in Python. The code 



sample here uses arrays. If you don’t know how arrays 
work, don’t worry; they’re covered in the next chapter. You 
just need to know that you can store a sequence of 
elements in a row of consecutive buckets called an array. 
The buckets are numbered starting with 0: the first bucket 
is at position #0, the second is #1, the third is #2, and so 
on. 

NOTE You will see me use the terms list and array 
interchangeably in the code. This is because in 
Python, arrays are called lists. 

The binary_search function takes a sorted array and an 
item. If the item is in the array, the function returns its 
position. You’ll keep track of what part of the array you 
have to search through. At the beginning, this is the entire 
array: 

low = 0 
high = len(arr) - 1 

 

Each time, you check the middle element: 

 

 



mid = (low + high) // 2     #A      
guess = arr[mid] 

#A mid is rounded down by Python automatically if (low + high) isn’t an even 

number.  

If the guess is too low, you update low accordingly: 

if guess < item: 
  low = mid + 1 

 

And if the guess is too high, you update high. Here’s the 
full code: 

def binary_search(arr, item): 
  low = 0                        #A 
  high = len(arr)—1             #A 
 
  while low <= high:           #B 
    mid = (low + high) // 2    #C 
    guess = arr[mid] 
    if guess == item:      #D 
      return mid 
    elif guess > item:       #E 
      high = mid - 1 
    else:                  #F 
      low = mid + 1 
  return None             #G 
 
my_list = [1, 3, 5, 7, 9]   #H 
 
print(binary_search(my_list, 3)) # => 1          #I 
print(binary_search(my_list, -1)) # => None      #J 

#A low and high keep track of which part of the list you’ll search in. 

#B While you haven’t narrowed it down to one element … 

#C … check the middle element. 

#D Found the item. 



#E The guess was too high. 

#F The guess was too low. 

#G The item doesn’t exist. 

#H Let’s test it! 

#I Remember, lists start at 0. The second slot has index 1. 

#J “None” means nil in Python. It indicates that the item wasn’t found. 

Exercises 
1. 1.1 Suppose you have a sorted list of 128 names, and 

you’re searching through it using binary search. What’s 
the maximum number of steps it would take? 

2. 1.2 Suppose you double the size of the list. What’s the 
maximum number of steps now? 

Running time 
Any time I talk about an algorithm, I’ll discuss its running 
time. Generally you want to choose the most efficient 
algorithm—whether you’re trying to optimize for time or 
space. 

 

Back to binary search. How much time do you save by 
using it? Well, the first approach was to check each 
number, one by one. If this is a list of 100 numbers, it takes 
up to 100 guesses. If it’s a list of 4 billion numbers, it takes 
up to 4 billion guesses. So the maximum number of 
guesses is the same as the size of the list. This is called 
linear time. 

Binary search is different. If the list is 100 items long, it 
takes at most 7 guesses. If the list is 4 billion items, it takes 
at most 32 guesses. Powerful, eh? Binary search runs in 



logarithmic time (or log time, as most people call it).  Here’s 
a table summarizing our findings today. 

 

Run times for search algorithms 

Big O notation 
Big O notation is special notation that tells you how fast an 
algorithm is. Who cares? Well, it turns out that you’ll use 
other people’s algorithms often—and when you do, it’s 
nice to understand how fast or slow they are. In this 
section, I’ll explain what Big O notation is and give you a 
list of the most common running times for algorithms using 
it. 

Algorithm running times grow at different rates 
Bob is writing a search algorithm for NASA. His algorithm 
will kick in when a rocket is about to land on the Moon, and 
it will help calculate where to land. 



 

This is an example of how the run time of two algorithms 
can grow at different rates. Bob is trying to decide between 
simple search and binary search. The algorithm needs to be 
both fast and correct. On one hand, binary search is faster. 
And Bob has only 10 seconds to figure out where to land—
otherwise, the rocket will be off course. On the other hand, 
simple search is easier to write, and there is less chance of 
bugs being introduced. And Bob really doesn’t want bugs 
in the code to land a rocket! To be extra careful, Bob 
decides to time both algorithms with a list of 100 elements. 

Let’s assume it takes 1 millisecond to check one element. 
With simple search, Bob has to check 100 elements, so the 
search takes 100 ms to run. On the other hand, he only has 
to check 7 elements with binary search (log2 100 is roughly 
7), so that search takes 7 ms to run. But realistically, the list 
will have more like a billion elements. If it does, how long 
will simple search take? How long will binary search take? 
Make sure you have an answer for each question before 
reading on. 



 

Running time for simple search vs. binary search, with a list of 100 elements 

Bob runs binary search with 1 billion elements, and it takes 
30 ms (log2 1,000,000,000 is roughly 30). “30 ms!” he thinks. 
“Binary search is about 15 times faster than simple search, 
because simple search took 100 ms with 100 elements, and 
binary search took 7 ms. So simple search will take 30 × 15 
= 450 ms, right? Way under my threshold of 10 seconds.” 
Bob decides to go with simple search. Is that the right 
choice? 

No. Turns out, Bob is wrong. Dead wrong. The run time for 
simple search with 1 billion items will be 1 billion ms, which 
is 11 days! The problem is, the run times for binary search 
and simple search don’t grow at the same rate. 

 

Run times grow at very different speeds! 

That is, as the number of items increases, binary search 



takes a little more time to run. But simple search takes a lot 
more time to run. So as the list of numbers gets bigger, 
binary search suddenly becomes a lot faster than simple 
search. Bob thought binary search was 15 times faster than 
simple search, but that’s not correct. If the list has 1 billion 
items, it’s more like 33 million times faster. That’s why it’s 
not enough to know how long an algorithm takes to run—
you need to know how the running time increases as the 
list size increases. That’s where Big O notation comes in. 

Big O notation tells you how fast an algorithm is. For 
example, suppose you have a list of size n. Simple search 
needs to check each element, so it will take n operations. 
The run time in Big O notation is O(n). Where are the 
seconds? There are none—Big O doesn’t tell you the speed 
in seconds. Big O notation lets you compare the number of 
operations. It tells you how fast the algorithm grows. 

 

Here’s another example. Binary search needs log n 
operations to check a list of size n. What’s the running time 
in Big O notation? It’s O(log n). In general, Big O notation is 
written as follows. 



 

What Big O notation looks like 

This tells you the number of operations an algorithm will 
make. It’s called Big O notation because you put a “big O” 
in front of the number of operations (it sounds like a joke, 
but it’s true!). 

Now let’s look at some examples. See if you can figure out 
the run time for these algorithms. 

Visualizing different Big O run times 
Here’s a practical example you can follow at home with a 
few pieces of paper and a pencil. Suppose you have to 
draw a grid of 16 boxes. 

 

What’s a good algorithm to draw this grid? 

ALGORITHM 1 

One way to do it is to draw 16 boxes, one at a time. 
Remember, Big O notation counts the number of 
operations. In this example, drawing one box is one 
operation. You have to draw 16 boxes. How many 
operations will it take, drawing one box at a time? 



 

Drawing a grid one box at a time 

It takes 16 steps to draw 16 boxes. What’s the running time 
for this algorithm? 

ALGORITHM 2 

Try this algorithm instead. Fold the paper. 

 

In this example, folding the paper once is an operation. You 
just made two boxes with that operation!  

Fold the paper again, and again, and again. 



 

Unfold it after four folds, and you’ll have a beautiful grid! 
Every fold doubles the number of boxes. You made 16 
boxes with 4 operations! 

 

Drawing a grid in four folds 

You can “draw” twice as many boxes with every fold, so you 
can draw 16 boxes in 4 steps. What’s the running time for 
this algorithm? Come up with running times for both 
algorithms before moving on. 

Answers: Algorithm 1 takes O(n) time, and algorithm 2 takes 
O(log n) time. 

Big O establishes a worst-case run time 
Suppose you’re using simple search to look for a person in 
the phone book. You know that simple search takes O(n) 
time to run, which means in the worst case, you’ll have to 
look through every single entry in your phone book. In this 
case, you’re looking for Adit. This guy is the first entry in 



your phone book. So you didn’t have to look at every 
entry—you found it on the first try. Did this algorithm take 
O(n) time? Or did it take O(1) time because you found the 
person on the first try? 

Simple search still takes O(n) time. In this case, you found 
what you were looking for instantly. That’s the best-case 
scenario. But we are using Big O notation for worst-case 
scenario analysis. So you can say that, in the worst case, 
you’ll have to look at every entry in the phone book once. 
That’s O(n) time. It’s a reassurance—you know that simple 
search will never be slower than O(n) time. 

NOTE Along with the worst-case run time, it’s 
also important to look at the average-case run 
time. Worst case versus average case is 
discussed in chapter 4. 

Some common Big O run times 
Here are five Big O run times that you’ll encounter a lot, 
sorted from fastest to slowest: 

• O(log n), also known as log time. Example: Binary 
search. 

• O(n), also known as linear time. Example: Simple 
search. 

• O(n * log n). Example: A fast sorting algorithm, like 
quicksort (coming up in chapter 4). 

• O(n2). Example: A slow sorting algorithm, like selection 
sort (coming up in chapter 2). 

• O(n!). Example: A really slow algorithm, like the 
traveling salesperson (coming up next!). 

Suppose you’re drawing a grid of 16 boxes again, and you 
can choose from 5 different algorithms to do so. If you use 
the first algorithm, it will take you O(log n) time to draw the 
grid. You can do 10 operations per second. With O(log n) 
time, it will take you 4 operations to draw a grid of 16 
boxes (log 16 is 4). So it will take you 0.4 seconds to draw 



the grid. What if you have to draw 1,024 boxes? It will take 
you log 1,024 = 10 operations, or 1 second to draw a grid 
of 1,024 boxes. These numbers are using the first algorithm. 

The second algorithm is slower: it takes O(n) time. It will 
take 16 operations to draw 16 boxes, and it will take 1,024 
operations to draw 1,024 boxes. How much time is that in 
seconds? 

Here’s how long it would take to draw a grid for the rest of 
the algorithms, from fastest to slowest: 

 

There are other run times, too, but these are the five most 
common. 

This is a simplification. In reality you can’t convert from a 
Big O run time to a number of operations this neatly, but 
this is good enough for now. We’ll come back to Big O 
notation in chapter 4, after you’ve learned a few more 
algorithms. For now, the main takeaways are as follows: 

• Algorithm speed isn’t measured in seconds, but in 
growth of the number of operations. 

• Instead of seconds, we talk about how quickly the run 
time of an algorithm increases as the size of the input 
increases. 

• Run time of algorithms is expressed in Big O notation. 
• O(log n) is faster than O(n), but it gets a lot faster as 

the list of items you’re searching grows. 

Exercises 
Give the run time for each of these scenarios in terms of 



Big O. 

1. 1.3 You have a name, and you want to find the 
person’s phone number in the phone book.  

2. 1.4 You have a phone number, and you want to find 
the person’s name in the phone book. (Hint: You’ll 
have to search through the whole book!) 

3. 1.5 You want to read the numbers of every person in 
the phone book. 

4. 1.6 You want to read the numbers of just the As. (This 
is a tricky one! It involves concepts that are covered 
more in chapter 4. Read the answer—you may be 
surprised!) 

The traveling salesperson 
You might have read that last section and thought, “There’s 
no way I’ll ever run into an algorithm that takes O(n!) time.” 
Well, let me try to prove you wrong! Here’s an example of 
an algorithm with a really bad running time. This is a 
famous problem in computer science, because its growth is 
appalling and some very smart people think it can’t be 
improved. It’s called the traveling salesperson problem. 

 

You have a salesperson. 

The salesperson has to go to five cities. 



 

This salesperson, whom I’ll call Opus, wants to hit all five 
cities while traveling the minimum distance. Here’s one way 
to do that: look at every possible order in which he could 
travel to the cities. 

 

He adds up the total distance and then picks the path with 
the lowest distance. There are 120 permutations with 5 
cities, so it will take 120 operations to solve the problem for 
5 cities. For 6 cities, it will take 720 operations (there are 
720 permutations). For 7 cities, it will take 5,040 operations! 



 

The number of operations increases drastically. 

In general, for n items, it will take n! (n factorial) operations 
to compute the result. So this is O(n!) time, or factorial time. 
It takes a lot of operations for everything except the 
smallest numbers. Once you’re dealing with 100+ cities, it’s 
impossible to calculate the answer in time—the Sun will 
collapse first. 

This is a terrible algorithm! Opus should use a different 
one, right? But he can’t. This is one of the unsolved 
problems in computer science. There’s no fast known 
algorithm for it, and some smart people think it’s 
impossible to have a smart algorithm for this problem. The 
best we can do is come up with an approximate solution; 
see chapter 10 for more. 

Recap 
• Binary search is a lot faster than simple search as your 

array gets bigger. 
• O(log n) is faster than O(n), but it gets a lot faster once 

the list of items you’re searching through grows.smat 
• Algorithm speed isn’t measured in seconds. 
• Algorithm times are measured in terms of growth of an 

algorithm. 
• Algorithm times are written in Big O notation. 


