
CHAPTER 

INTRODUCTION 

Ever since computers were invented, we have wondered whether they might be 
made to learn. If we could understand how to program them to learn-to improve 
automatically with experience-the impact would be dramatic. Imagine comput- 
ers learning from medical records which treatments are most effective for new 
diseases, houses learning from experience to optimize energy costs based on the 
particular usage patterns of their occupants, or personal software assistants learn- 
ing the evolving interests of their users in order to highlight especially relevant 
stories from the online morning newspaper. A successful understanding of how to 
make computers learn would open up many new uses of computers and new levels 
of competence and customization. And a detailed understanding of information- 
processing algorithms for machine learning might lead to a better understanding 
of human learning abilities (and disabilities) as well. 

We do not yet know how to make computers learn nearly as well as people 
learn. However, algorithms have been invented that are effective for certain types 
of learning tasks, and a theoretical understanding of learning is beginning to 
emerge. Many practical computer programs have been developed to exhibit use- 
ful types of learning, and significant commercial applications have begun to ap- 
pear. For problems such as speech recognition, algorithms based on machine 
learning outperform all other approaches that have been attempted to date. In 
the field known as data mining, machine learning algorithms are being used rou- 
tinely to discover valuable knowledge from large commercial databases containing 
equipment maintenance records, loan applications, financial transactions, medical 
records, and the like. As our understanding of computers continues to mature, it 
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seems inevitable that machine learning will play an increasingly central role in 
computer science and computer technology. 

A few specific achievements provide a glimpse of the state of the art: pro- 
grams have been developed that successfully learn to recognize spoken words 
(Waibel 1989; Lee 1989), predict recovery rates of pneumonia patients (Cooper 
et al. 1997), detect fraudulent use of credit cards, drive autonomous vehicles 
on public highways (Pomerleau 1989), and play games such as backgammon at 
levels approaching the performance of human world champions (Tesauro 1992, 
1995). Theoretical results have been developed that characterize the fundamental 
relationship among the number of training examples observed, the number of hy- 
potheses under consideration, and the expected error in learned hypotheses. We 
are beginning to obtain initial models of human and animal learning and to un- 
derstand their relationship to learning algorithms developed for computers (e.g., 
Laird et al. 1986; Anderson 1991; Qin et al. 1992; Chi and Bassock 1989; Ahn 
and Brewer 1993). In applications, algorithms, theory, and studies of biological 
systems, the rate of progress has increased significantly over the past decade. Sev- 
eral recent applications of machine learning are summarized in Table 1.1. Langley 
and Simon (1995) and Rumelhart et al. (1994) survey additional applications of 
machine learning. 

This book presents the field of machine learning, describing a variety of 
learning paradigms, algorithms, theoretical results, and applications. Machine 
learning is inherently a multidisciplinary field. It draws on results from artifi- 
cial intelligence, probability and statistics, computational complexity theory, con- 
trol theory, information theory, philosophy, psychology, neurobiology, and other 
fields. Table 1.2 summarizes key ideas from each of these fields that impact the 
field of machine learning. While the material in this book is based on results from 
many diverse fields, the reader need not be an expert in any of them. Key ideas 
are presented from these fields using a nonspecialist's vocabulary, with unfamiliar 
terms and concepts introduced as the need arises. 

1.1 WELL-POSED LEARNING PROBLEMS 
Let us begin our study of machine learning by considering a few learning tasks. For 
the purposes of this book we will define learning broadly, to include any .computer 
program that improves its performance at some task through experience. Put more 
precisely, 

Definition: A computer program is said to learn from experience E with respect 
to some class of tasks T and performance measure P, if its performance at tasks in 
T, as measured by P, improves with experience E. 

For example, a computer program that learns to play checkers might improve 
its performance as measured by its abiliry to win at the class of tasks involving 
playing checkers games, through experience obtained by playing games against 
itself. In general, to have a well-defined learning problem, we must identity these 
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0 Learning to recognize spoken words. 
All of the most successful speech recognition systems employ machine learning in some form. 
For example, the SPHINX system (e.g., Lee 1989) learns speaker-specific strategies for recognizing 
the primitive sounds (phonemes) and words from the observed speech signal. Neural network 
learning methods (e.g., Waibel et al. 1989) and methods for learning hidden Markov models 
(e.g., Lee 1989) are effective for automatically customizing to,individual speakers, vocabularies, 
microphone characteristics, background noise, etc. Similar techniques have potential applications 
in many signal-interpretation problems. 

0 Learning to drive an autonomous vehicle. 
Machine learning methods have been used to train computer-controlled vehicles to steer correctly 
when driving on a variety of road types. For example, the ALVINN system (Pomerleau 1989) 
has used its learned strategies to drive unassisted at 70 miles per hour for 90 miles on public 
highways among other cars. Similar techniques have possible applications in many sensor-based 
control problems. 

0 Learning to classify new astronomical structures. 
Machine learning methods have been applied to a variety of large databases to learn general 
regularities implicit in the data. For example, decision tree learning algorithms have been used 
by NASA to learn how to classify celestial objects from the second Palomar Observatory Sky 
Survey (Fayyad et al. 1995). This system is now used to automatically classify all objects in the 
Sky Survey, which consists of three terrabytes of image data. 

0 Learning to play world-class backgammon. 
The most successful computer programs for playing games such as backgammon are based on 
machiie learning algorithms. For example, the world's top computer program for backgammon, 
TD-GAMMON (Tesauro 1992, 1995). learned its strategy by playing over one million practice 
games against itself. It now plays at a level competitive with the human world champion. Similar 
techniques have applications in many practical problems where very large search spaces must be 
examined efficiently. 

TABLE 1.1 
Some successful applications of machiie learning. 

three features: the class of tasks, the measure of performance to be improved, and 
the source of experience. 

A checkers learning problem: 
Task T: playing checkers 

0 Performance measure P: percent of games won against opponents 
Training experience E: playing practice games against itself 

We can specify many learning problems in this fashion, such as learning 
to recognize handwritten words, or learning to drive a robotic automobile au- 
tonomously. 

A handwriting recognition learning problem: 
0 Task T: recognizing and classifying handwritten words within images 
0 Performance measure P:  percent of words correctly classified 
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Artificial intelligence 
Learning symbolic representations of concepts. Machine learning as a search problem. Learning 
as an approach to improving problem solving. Using prior knowledge together with training data 
to guide learning. 

0 Bayesian methods 
Bayes' theorem as the basis for calculating probabilities of hypotheses. The naive Bayes classifier. 
Algorithms for estimating values of unobserved variables. 

0 Computational complexity theory 
Theoretical bounds on the inherent complexity of different learning tasks, measured in terms of 
the computational effort, number of training examples, number of mistakes, etc. required in order 
to learn. 
Control theory 
Procedures that learn to control processes in order to optimize predefined objectives and that learn 
to predict the next state of the process they are controlling. 

0 Information theory 
Measures of entropy and information content. Minimum description length approaches to learning. 
Optimal codes and their relationship to optimal training sequences for encoding a hypothesis. 
Philosophy 
Occam's razor, suggesting that the simplest hypothesis is the best. Analysis of the justification for 
generalizing beyond observed data. 

0 Psychology and neurobiology 
The power law of practice, which states that over a very broad range of learning problems, 
people's response time improves with practice according to a power law. Neurobiological studies 
motivating artificial neural network models of learning. 

0 Statistics 
Characterization of errors (e.g., bias and variance) that occur when estimating the accuracy of a 
hypothesis based on a limited sample of data. Confidence intervals, statistical tests. 

TABLE 1.2 
Some disciplines and examples of their influence on machine learning. 

0 Training experience E: a database of handwritten words with given classi- 
fications 

A robot driving learning problem: 
0 Task T: driving on public four-lane highways using vision sensors 
0 Performance measure P: average distance traveled before an error (as judged 

by human overseer) 
0 Training experience E: a sequence of images and steering commands record- 

ed while observing a human driver 

Our definition of learning is broad enough to include most tasks that we 
would conventionally call "learning" tasks, as we use the word in everyday lan- 
guage. It is also broad enough to encompass computer programs that improve 
from experience in quite straightforward ways. For example, a database system 
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that allows users to update data entries would fit our definition of a learning 
system: it improves its performance at answering database queries, based on the 
experience gained from database updates. Rather than worry about whether this 
type of activity falls under the usual informal conversational meaning of the word 
"learning," we will simply adopt our technical definition of the class of programs 
that improve through experience. Within this class we will find many types of 
problems that require more or less sophisticated solutions. Our concern here is 
not to analyze the meaning of the English word "learning" as it is used in ev- 
eryday language. Instead, our goal is to define precisely a class of problems that 
encompasses interesting forms of learning, to explore algorithms that solve such 
problems, and to understand the fundamental structure of learning problems and 
processes. 

1.2 DESIGNING A LEARNING SYSTEM 
In order to illustrate some of the basic design issues and approaches to machine 
learning, let us consider designing a program to learn to play checkers, with 
the goal of entering it in the world checkers tournament. We adopt the obvious 
performance measure: the percent of games it wins in this world tournament. 

1.2.1 Choosing the Training Experience 
The first design choice we face is to choose the type of training experience from 
which our system will learn. The type of training experience available can have a 
significant impact on success or failure of the learner. One key attribute is whether 
the training experience provides direct or indirect feedback regarding the choices 
made by the performance system. For example, in learning to play checkers, the 
system might learn from direct training examples consisting of individual checkers 
board states and the correct move for each. Alternatively, it might have available 
only indirect information consisting of the move sequences and final outcomes 
of various games played. In this later case, information about the correctness 
of specific moves early in the game must be inferred indirectly from the fact 
that the game was eventually won or lost. Here the learner faces an additional 
problem of credit assignment, or determining the degree to which each move in 
the sequence deserves credit or blame for the final outcome. Credit assignment can 
be a particularly difficult problem because the game can be lost even when early 
moves are optimal, if these are followed later by poor moves. Hence, learning from 
direct training feedback is typically easier than learning from indirect feedback. 

A second important attribute of the training experience is the degree to which 
the learner controls the sequence of training examples. For example, the learner 
might rely on the teacher to select informative board states and to provide the 
correct move for each. Alternatively, the learner might itself propose board states 
that it finds particularly confusing and ask the teacher for the correct move. Or the 
learner may have complete control over both the board states and (indirect) training 
classifications, as it does when it learns by playing against itself with no teacher 



present. Notice in this last case the learner may choose between experimenting 
with novel board states that it has not yet considered, or honing its skill by playing 
minor variations of lines of play it currently finds most promising. Subsequent 
chapters consider a number of settings for learning, including settings in which 
training experience is provided by a random process outside the learner's control, 
settings in which the learner may pose various types of queries to an expert teacher, 
and settings in which the learner collects training examples by autonomously 
exploring its environment. 

A third important attribute of the training experience is how well it repre- 
sents the distribution of examples over which the final system performance P must 
be measured. In general, learning is most reliable when the training examples fol- 
low a distribution similar to that of future test examples. In our checkers learning 
scenario, the performance metric P is the percent of games the system wins in 
the world tournament. If its training experience E consists only of games played 
against itself, there is an obvious danger that this training experience might not 
be fully representative of the distribution of situations over which it will later be 
tested. For example, the learner might never encounter certain crucial board states 
that are very likely to be played by the human checkers champion. In practice, 
it is often necessary to learn from a distribution of examples that is somewhat 
different from those on which the final system will be evaluated (e.g., the world 
checkers champion might not be interested in teaching the program!). Such situ- 
ations are problematic because mastery of one distribution of examples will not 
necessary lead to strong performance over some other distribution. We shall see 
that most current theory of machine learning rests on the crucial assumption that 
the distribution of training examples is identical to the distribution of test ex- 
amples. Despite our need to make this assumption in order to obtain theoretical 
results, it is important to keep in mind that this assumption must often be violated 
in practice. 

To proceed with our design, let us decide that our system will train by 
playing games against itself. This has the advantage that no external trainer need 
be present, and it therefore allows the system to generate as much training data 
as time permits. We now have a fully specified learning task. 

A checkers learning problem: 

0 Task T: playing checkers 
0 Performance measure P: percent of games won in the world tournament 
0 Training experience E: games played against itself 

In order to complete the design of the learning system, we must now choose 

1. the exact type of knowledge to be,learned 
2. a representation for this target knowledge 
3. a learning mechanism 
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1.2.2 Choosing the Target Function 
The next design choice is to determine exactly what type of knowledge will be 
learned and how this will be used by the performance program. Let us begin with 
a checkers-playing program that can generate the legal moves from any board 
state. The program needs only to learn how to choose the best move from among 
these legal moves. This learning task is representative of a large class of tasks for 
which the legal moves that define some large search space are known a priori, but 
for which the best search strategy is not known. Many optimization problems fall 
into this class, such as the problems of scheduling and controlling manufacturing 
processes where the available manufacturing steps are well understood, but the 
best strategy for sequencing them is not. 

Given this setting where we must learn to choose among the legal moves, 
the most obvious choice for the type of information to be learned is a program, 
or function, that chooses the best move for any given board state. Let us call this 
function ChooseMove and use the notation ChooseMove : B -+ M to indicate 
that this function accepts as input any board from the set of legal board states B 
and produces as output some move from the set of legal moves M. Throughout 
our discussion of machine learning we will find it useful to reduce the problem 
of improving performance P at task T to the problem of learning some particu- 
lar targetfunction such as ChooseMove. The choice of the target function will 
therefore be a key design choice. 

Although ChooseMove is an obvious choice for the target function in our 
example, this function will turn out to be very difficult to learn given the kind of in- 
direct training experience available to our system. An alternative target function- 
and one that will turn out to be easier to learn in this setting-is an evaluation 
function that assigns a numerical score to any given board state. Let us call this 
target function V  and again use the notation V  : B + 8 to denote that V  maps 
any legal board state from the set B to some real value (we use 8 to denote the set 
of real numbers). We intend for this target function V  to assign higher scores to 
better board states. If the system can successfully learn such a target function V ,  
then it can easily use it to select the best move from any current board position. 
This can be accomplished by generating the successor board state produced by 
every legal move, then using V  to choose the best successor state and therefore 
the best legal move. 

What exactly should be the value of the target function V  for any given 
board state? Of course any evaluation function that assigns higher scores to better 
board states will do. Nevertheless, we will find it useful to define one particular 
target function V  among the many that produce optimal play. As we shall see, 
this will make it easier to design a training algorithm. Let us therefore define the 
target value V ( b )  for an arbitrary board state b  in B ,  as follows: 

1. if b  is a final board state that is won, then V ( b )  = 100 
2. if b is a final board state that is lost, then V ( b )  = -100 
3. if b is a final board state that is drawn, then V ( b )  = 0 



4. if b is a not a final state in the game, then V(b) = V(bl), where b' is the best 
final board state that can be achieved starting from b and playing optimally 
until the end of the game (assuming the opponent plays optimally, as well). 

While this recursive definition specifies a value of V(b) for every board 
state b, this definition is not usable by our checkers player because it is not 
efficiently computable. Except for the trivial cases (cases 1-3) in which the game 
has already ended, determining the value of V(b) for a particular board state 
requires (case 4) searching ahead for the optimal line of play, all the way to 
the end of the game! Because this definition is not efficiently computable by our 
checkers playing program, we say that it is a nonoperational definition. The goal 
of learning in this case is to discover an operational description of V ;  that is, a 
description that can be used by the checkers-playing program to evaluate states 
and select moves within realistic time bounds. 

Thus, we have reduced the learning task in this case to the problem of 
discovering an operational description of the ideal targetfunction V. It may be 
very difficult in general to learn such an operational form of V perfectly. In fact, 
we often expect learning algorithms to acquire only some approximation to the 
target function, and for this reason the process of learning the target function 
is often called function approximation. In the current discussion we will use the 
symbol ? to refer to the function that is actually learned by our program, to 
distinguish it from the ideal target function V. 

1.23 Choosing a Representation for the Target Function 
Now that we have specified the ideal target function V, we must choose a repre- 
sentation that the learning program will use to describe the function c that it will 
learn. As with earlier design choices, we again have many options. We could, 
for example, allow the program to represent using a large table with a distinct 
entry specifying the value for each distinct board state. Or we could allow it to 
represent using a collection of rules that match against features of the board 
state, or a quadratic polynomial function of predefined board features, or an arti- 
ficial neural network. In general, this choice of representation involves a crucial 
tradeoff. On one hand, we wish to pick a very expressive representation to allow 
representing as close an approximation as possible to the ideal target function V. 
On the other hand, the more expressive the representation, the more training data 
the program will require in order to choose among the alternative hypotheses it 
can represent. To keep the discussion brief, let us choose a simple representation: 
for any given board state, the function c will be calculated as a linear combination 
of the following board features: 

0 xl: the number of black pieces on the board 
x2: the number of red pieces on the board 

0 xs: the number of black kings on the board 
0 x4: the number of red kings on the board 
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x5: the number of black pieces threatened by red (i.e., which can be captured 
on red's next turn) 
X6: the number of red pieces threatened by black 

Thus, our learning program will represent c(b) as a linear function of the 
form 

where wo through W6 are numerical coefficients, or weights, to be chosen by the 
learning algorithm. Learned values for the weights w l  through W6 will determine 
the relative importance of the various board features in determining the value of 
the board, whereas the weight wo will provide an additive constant to the board 
value. 

To summarize our design choices thus far, we have elaborated the original 
formulation of the learning problem by choosing a type of training experience, 
a target function to be learned, and a representation for this target function. Our 
elaborated learning task is now 

Partial design of a checkers learning program: 
Task T: playing checkers 
Performance measure P:  percent of games won in the world tournament 
Training experience E: games played against itself 
Targetfunction: V:Board + 8 
Targetfunction representation 

The first three items above correspond to the specification of the learning task, 
whereas the final two items constitute design choices for the implementation of the 
learning program. Notice the net effect of this set of design choices is to reduce 
the problem of learning a checkers strategy to the problem of learning values for 
the coefficients wo through w 6  in the target function representation. 

1.2.4 Choosing a Function Approximation Algorithm 
In order to learn the target function f we require a set of training examples, each 
describing a specific board state b and the training value Vtrain(b) for b. In other 
words, each training example is an ordered pair of the form (b, V',,,i,(b)). For 
instance, the following training example describes a board state b in which black 
has won the game (note x2 = 0 indicates that red has no remaining pieces) and 
for which the target function value VZrain(b) is therefore +100. 
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Below we describe a procedure that first derives such training examples from 
the indirect training experience available to the learner, then adjusts the weights 
wi to best fit these training examples. 

1.2.4.1 ESTIMATING TRAINING VALUES 

Recall that according to our formulation of the learning problem, the only training 
information available to our learner is whether the game was eventually won or 
lost. On the other hand, we require training examples that assign specific scores 
to specific board states. While it is easy to assign a value to board states that 
correspond to the end of the game, it is less obvious how to assign training values 
to the more numerous intermediate board states that occur before the game's end. 
Of course the fact that the game was eventually won or lost does not necessarily 
indicate that every board state along the game path was necessarily good or bad. 
For example, even if the program loses the game, it may still be the case that 
board states occurring early in the game should be rated very highly and that the 
cause of the loss was a subsequent poor move. 

Despite the ambiguity inherent in estimating training values for intermediate 
board states, one simple approach has been found to be surprisingly successful. 
This approach is to assign the training value of Krain(b) for any intermediate board 
state b to be ?(~uccessor(b)) ,  where ? is the learner's current approximation to 
V and where Successor(b) denotes the next board state following b for which it 
is again the program's turn to move (i.e., the board state following the program's 
move and the opponent's response). This rule for estimating training values can 
be summarized as 

~ u l k  for estimating training values. 
V,,,i. (b) c c(~uccessor(b)) 

While it may seem strange to use the current version of f to estimate training 
values that will be used to refine this very same function, notice that we are using 
estimates of the value of the Successor(b) to estimate the value of board state b. In- 
tuitively, we can see this will make sense if ? tends to be more accurate for board 
states closer to game's end. In fact, under certain conditions (discussed in Chap- 
ter 13) the approach of iteratively estimating training values based on estimates of 
successor state values can be proven to converge toward perfect estimates of Vtrain. 

1.2.4.2 ADJUSTING THE WEIGHTS 

All that remains is to specify the learning algorithm for choosing the weights wi  to^ 
best fit the set of training examples { (b ,  Vtrain(b))}.  As a first step we must define 
what we mean by the bestfit to the training data. One common approach is to 
define the best hypothesis, or set of weights, as that which minimizes the squarg 
error E between the training values and the values predicted by the hypothesis V .  



Thus, we seek the weights, or equivalently the c ,  that minimize E for the observed 
training examples. Chapter 6 discusses settings in which minimizing the sum of 
squared errors is equivalent to finding the most probable hypothesis given the 
observed training data. 

Several algorithms are known for finding weights of a linear function that 
minimize E defined in this way. In our case, we require an algorithm that will 
incrementally refine the weights as new training examples become available and 
that will be robust to errors in these estimated training values. One such algorithm 
is called the least mean squares, or LMS training rule. For each observed training 
example it adjusts the weights a small amount in the direction that reduces the 
error on this training example. As discussed in Chapter 4, this algorithm can be 
viewed as performing a stochastic gradient-descent search through the space of 
possible hypotheses (weight values) to minimize the squared enor E. The LMS 
algorithm is defined as follows: 

LMS weight update rule. 
For each training example (b, Kmin(b)) 

Use the current weights to calculate ?(b) 
For each weight mi, update it as 

Here q is a small constant (e.g., 0.1) that moderates the size of the weight update. 
To get an intuitive understanding for why this weight update rule works, notice 
that when the error (Vtrain(b) - c(b)) is zero, no weights are changed. When 
(V,,ain(b) - e(b)) is positive (i.e., when f (b)  is too low), then each weight is 
increased in proportion to the value of its corresponding feature. This will raise 
the value of ?(b), reducing the error. Notice that if the value of some feature 
xi is zero, then its weight is not altered regardless of the error, so that the only 
weights updated are those whose features actually occur on the training example 
board. Surprisingly, in certain settings this simple weight-tuning method can be 
proven to converge to the least squared error approximation to the &,in values 
(as discussed in Chapter 4). 

1.2.5 The Final Design 
The final design of our checkers learning system can be naturally described by four 
distinct program modules that represent the central components in many learning 
systems. These four modules, summarized in Figure 1.1, are as follows: 

0 The Performance System is the module that must solve the given per- 
formance task, in this case playing checkers, by using the learned target 
function(s). It takes an instance of a new problem (new game) as input and 
produces a trace of its solution (game history) as output. In our case, the 
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Experiment 
Generator 

New problem Hypothesis 
(initial game board) f VJ 

Performance Generalizer 
System 

Solution tract Training examples 
(game history) /<bl .Ymtn (blJ >. <bZ. Em(b2) >. ... I 

Critic 

FIGURE 1.1 
Final design of the checkers learning program. 

strategy used by the Performance System to select its next move at each step 
is determined by the learned p evaluation function. Therefore, we expect 
its performance to improve as this evaluation function becomes increasingly 
accurate. 

e The Critic takes as input the history or trace of the game and produces as 
output a set of training examples of the target function. As shown in the 
diagram, each training example in this case corresponds to some game state 
in the trace, along with an estimate Vtrai, of the target function value for this 
example. In our example, the Critic corresponds to the training rule given 
by Equation (1.1). 
The Generalizer takes as input the training examples and produces an output 
hypothesis that is its estimate of the target function. It generalizes from the 
specific training examples, hypothesizing a general function that covers these 
examples and other cases beyond the training examples. In our example, the 
Generalizer corresponds to the LMS algorithm, and the output hypothesis is 
the function f described by the learned weights wo, . . . , W6. 
The Experiment Generator takes as input the current hypothesis (currently 
learned function) and outputs a new problem (i.e., initial board state) for the 
Performance System to explore. Its role is to pick new practice problems that 
will maximize the learning rate of the overall system. In our example, the 
Experiment Generator follows a very simple strategy: It always proposes the 
same initial game board to begin a new game. More sophisticated strategies 



could involve creating board positions designed to explore particular regions 
of the state space. 

Together, the design choices we made for our checkers program produce 
specific instantiations for the performance system, critic; generalizer, and experi- 
ment generator. Many machine learning systems can-be usefully characterized in 
terms of these four generic modules. 

The sequence of design choices made for the checkers program is summa- 
rized in Figure 1.2. These design choices have constrained the learning task in a 
number of ways. We have restricted the type of knowledge that can be acquired 
to a single linear evaluation function. Furthermore, we have constrained this eval- 
uation function to depend on only the six specific board features provided. If the 
true target function V can indeed be represented by a linear combination of these 

Determine Type 
of Training Experience 1 

Determine 
Target Function I 

I Determine Representation 
of Learned Function 

... 
Linear function Artificial neural 
of six features network 

/ \ I Determine 
Learning Algorithm I 

FIGURE 1.2 
Sununary of choices in designing the checkers learning program. 



particular features, then our program has a good chance to learn it. If not, then the 
best we can hope for is that it will learn a good approximation, since a program 
can certainly never learn anything that it cannot at least represent. 

Let us suppose that a good approximation to the true V function can, in fact, 
be represented in this form. The question then arises as to whether this learning 
technique is guaranteed to find one. Chapter 13 provides a theoretical analysis 
showing that under rather restrictive assumptions, variations on this approach 
do indeed converge to the desired evaluation function for certain types of search 
problems. Fortunately, practical experience indicates that this approach to learning 
evaluation functions is often successful, even outside the range of situations for 
which such guarantees can be proven. 

Would the program we have designed be able to learn well enough to beat 
the human checkers world champion? Probably not. In part, this is because the 
linear function representation for ? is too simple a representation to capture well 
the nuances of the game. However, given a more sophisticated representation for 
the target function, this general approach can, in fact, be quite successful. For 
example, Tesauro (1992, 1995) reports a similar design for a program that learns 
to play the game of backgammon, by learning a very similar evaluation function 
over states of the game. His program represents the learned evaluation function 
using an artificial neural network that considers the complete description of the 
board state rather than a subset of board features. After training on over one million 
self-generated training games, his program was able to play very competitively 
with top-ranked human backgammon players. 

Of course we could have designed many alternative algorithms for this 
checkers learning task. One might, for example, simply store the given training 
examples, then try to find the "closest" stored situation to match any new situation 
(nearest neighbor algorithm, Chapter 8). Or we might generate a large number of 
candidate checkers programs and allow them to play against each other, keep- 
ing only the most successful programs and further elaborating or mutating these 
in a kind of simulated evolution (genetic algorithms, Chapter 9). Humans seem 
to follow yet a different approach to learning strategies, in which they analyze, 
or explain to themselves, the reasons underlying specific successes and failures 
encountered during play (explanation-based learning, Chapter 11). Our design is 
simply one of many, presented here to ground our discussion of the decisions that 
must go into designing a learning method for a specific class of tasks. 

1.3 PERSPECTIVES AND ISSUES IN MACHINE LEARNING 
One useful perspective on machine learning is that it involves searching a very 
large space of possible hypotheses to determine one that best fits the observed data 
and any prior knowledge held by the learner. For example, consider the space of 
hypotheses that could in principle be output by the above checkers learner. This 
hypothesis space consists of all evaluation functions that can be represented by 
some choice of values for the weights wo through w6. The learner's task is thus to 
search through this vast space to locate the hypothesis that is most consistent with 



the available training examples. The LMS algorithm for fitting weights achieves 
this goal by iteratively tuning the weights, adding a correction to each weight 
each time the hypothesized evaluation function predicts a value that differs from 
the training value. This algorithm works well when the hypothesis representation 
considered by the learner defines a continuously parameterized space of potential 
hypotheses. 

Many of the chapters in this book present algorithms that search a hypothesis 
space defined by some underlying representation (e.g., linear functions, logical 
descriptions, decision trees, artificial neural networks). These different hypothesis 
representations are appropriate for learning different kinds of target functions. For 
each of these hypothesis representations, the corresponding learning algorithm 
takes advantage of a different underlying structure to organize the search through 
the hypothesis space. 

Throughout this book we will return to this perspective of learning as a 
search problem in order to characterize learning methods by their search strategies 
and by the underlying structure of the search spaces they explore. We will also 
find this viewpoint useful in formally analyzing the relationship between the size 
of the hypothesis space to be searched, the number of training examples available, 
and the confidence we can have that a hypothesis consistent with the training data 
will correctly generalize to unseen examples. 

1.3.1 Issues in Machine Learning 
Our checkers example raises a number of generic questions about machine learn- 
ing. The field of machine learning, and much of this book, is concerned with 
answering questions such as the following: 

What algorithms exist for learning general target functions from specific 
training examples? In what settings will particular algorithms converge to the 
desired function, given sufficient training data? Which algorithms perform 
best for which types of problems and representations? 
How much training data is sufficient? What general bounds can be found 
to relate the confidence in learned hypotheses to the amount of training 
experience and the character of the learner's hypothesis space? 
When and how can prior knowledge held by the learner guide the process 
of generalizing from examples? Can prior knowledge be helpful even when 
it is only approximately correct? 
What is the best strategy for choosing a useful next training experience, and 
how does the choice of this strategy alter the complexity of the learning 
problem? 
What is the best way to reduce the learning task to one or more function 
approximation problems? Put another way, what specific functions should 
the system attempt to learn? Can this process itself be automated? 
How can the learner automatically alter its representation to improve its 
ability to represent and learn the target function? 



16 MACHINE LEARNING 

1.4 HOW TO READ THIS BOOK 
This book contains an introduction to the primary algorithms and approaches to 
machine learning, theoretical results on the feasibility of various learning tasks 
and the capabilities of specific algorithms, and examples of practical applications 
of machine learning to real-world problems. Where possible, the chapters have 
been written to be readable in any sequence. However, some interdependence 
is unavoidable. If this is being used as a class text, I recommend first covering 
Chapter 1 and Chapter 2. Following these two chapters, the remaining chapters 
can be read in nearly any sequence. A one-semester course in machine learning 
might cover the first seven chapters, followed by whichever additional chapters 
are of greatest interest to the class. Below is a brief survey of the chapters. 

Chapter 2 covers concept learning based on symbolic or logical representa- 
tions. It also discusses the general-to-specific ordering over hypotheses, and 
the need for inductive bias in learning. 

0 Chapter 3 covers decision tree learning and the problem of overfitting the 
training data. It also examines Occam's razor-a principle recommending 
the shortest hypothesis among those consistent with the data. 

0 Chapter 4 covers learning of artificial neural networks, especially the well- 
studied BACKPROPAGATION algorithm, and the general approach of gradient 
descent. This includes a detailed example of neural network learning for 
face recognition, including data and algorithms available over the World 
Wide Web. 

0 Chapter 5 presents basic concepts from statistics and estimation theory, fo- 
cusing on evaluating the accuracy of hypotheses using limited samples of 
data. This includes the calculation of confidence intervals for estimating 
hypothesis accuracy and methods for comparing the accuracy of learning 
methods. 

0 Chapter 6 covers the Bayesian perspective on machine learning, including 
both the use of Bayesian analysis to characterize non-Bayesian learning al- 
gorithms and specific Bayesian algorithms that explicitly manipulate proba- 
bilities. This includes a detailed example applying a naive Bayes classifier to 
the task of classifying text documents, including data and software available 
over the World Wide Web. 

0 Chapter 7 covers computational learning theory, including the Probably Ap- 
proximately Correct (PAC) learning model and the Mistake-Bound learning 
model. This includes a discussion of the WEIGHTED MAJORITY algorithm for 
combining multiple learning methods. 

0 Chapter 8 describes instance-based learning methods, including nearest neigh- 
bor learning, locally weighted regression, and case-based reasoning. 

0 Chapter 9 discusses learning algorithms modeled after biological evolution, 
including genetic algorithms and genetic programming. 



0 Chapter 10 covers algorithms for learning sets of rules, including Inductive 
Logic Programming approaches to learning first-order Horn clauses. 

0 Chapter 11 covers explanation-based learning, a learning method that uses 
prior knowledge to explain observed training examples, then generalizes 
based on these explanations. 

0 Chapter 12 discusses approaches to combining approximate prior knowledge 
with available training data in order to improve the accuracy of learned 
hypotheses. Both symbolic and neural network algorithms are considered. 

0 Chapter 13 discusses reinforcement learning-an approach to control learn- 
ing that accommodates indirect or delayed feedback as training information. 
The checkers learning algorithm described earlier in Chapter 1 is a simple 
example of reinforcement learning. 

The end of each chapter contains a summary of the main concepts covered, 
suggestions for further reading, and exercises. Additional updates to chapters, as 
well as data sets and implementations of algorithms, are available on the World 
Wide Web at http://www.cs.cmu.edu/-tom/mlbook.html. 

1.5 SUMMARY AND FURTHER READING 
Machine learning addresses the question of how to build computer programs that 
improve their performance at some task through experience. Major points of this 
chapter include: 

Machine learning algorithms have proven to be of great practical value in a 
variety of application domains. They are especially useful in (a) data mining 
problems where large databases may contain valuable implicit regularities 
that can be discovered automatically (e.g., to analyze outcomes of medical 
treatments from patient databases or to learn general rules for credit worthi- 
ness from financial databases); (b) poorly understood domains where humans 
might not have the knowledge needed to develop effective algorithms (e.g., 
human face recognition from images); and (c) domains where the program 
must dynamically adapt to changing conditions (e.g., controlling manufac- 
turing processes under changing supply stocks or adapting to the changing 
reading interests of individuals). 
Machine learning draws on ideas from a diverse set of disciplines, including 
artificial intelligence, probability and statistics, computational complexity, 
information theory, psychology and neurobiology, control theory, and phi- 
losophy. 

0 A well-defined learning problem requires a well-specified task, performance 
metric, and source of training experience. 

0 Designing a machine learning approach involves a number of design choices, 
including choosing the type of training experience, the target function to 
be learned, a representation for this target function, and an algorithm for 
learning the target function from training examples. 
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0 Learning involves search: searching through a space of possible hypotheses 
to find the hypothesis that best fits the available training examples and other 
prior constraints or knowledge. Much of this book is organized around dif- 
ferent learning methods that search different hypothesis spaces (e.g., spaces 
containing numerical functions, neural networks, decision trees, symbolic 
rules) and around theoretical results that characterize conditions under which 
these search methods converge toward an optimal hypothesis. 

There are a number of good sources for reading about the latest research 
results in machine learning. Relevant journals include Machine Learning, Neural 
Computation, Neural Networks, Journal of the American Statistical Association, 
and the IEEE Transactions on Pattern Analysis and Machine Intelligence. There 
are also numerous annual conferences that cover different aspects of machine 
learning, including the International Conference on Machine Learning, Neural 
Information Processing Systems, Conference on Computational Learning The- 
ory, International Conference on Genetic Algorithms, International Conference 
on Knowledge Discovery and Data Mining, European Conference on Machine 
Learning, and others. 

EXERCISES 
1.1. Give three computer applications for which machine learning approaches seem ap- 

propriate and three for which they seem inappropriate. Pick applications that are not 
already mentioned in this chapter, and include a one-sentence justification for each. 

1.2. Pick some learning task not mentioned in this chapter. Describe it informally in a 
paragraph in English. Now describe it by stating as precisely as possible the task, 
performance measure, and training experience. Finally, propose a target function to 
be learned and a target representation. Discuss the main tradeoffs you considered in 
formulating this learning task. 

1.3. Prove that the LMS weight update rule described in this chapter performs a gradient 
descent to minimize the squared error. In particular, define the squared error E as in 
the text. Now calculate the derivative of E with respect to the weight wi, assuming 
that ?(b) is a linear function as defined in the text. Gradient descent is achieved by 
updating each weight in proportion to -e. Therefore, you must show that the LMS 
training rule alters weights in this proportion for each training example it encounters. 

1.4. Consider alternative strategies for the Experiment Generator module of Figure 1.2. 
In particular, consider strategies in which the Experiment Generator suggests new 
board positions by 

Generating random legal board positions 
0 Generating a position by picking a board state from the previous game, then 

applying one of the moves that was not executed 
A strategy of your own design 

Discuss tradeoffs among these strategies. Which do you feel would work best if the 
number of training examples was held constant, given the performance measure of 
winning the most games at the world championships? 

1.5. Implement an algorithm similar to that discussed for the checkers problem, but use 
the simpler game of tic-tac-toe. Represent the learned function V as a linear com- 



bination of board features of your choice. To train your program, play it repeatedly 
against a second copy of the program that uses a fixed evaluation function you cre- 
ate by hand. Plot the percent of games won by your system, versus the number of 
training games played. 
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